Almost valuation rings
Authors
Abstract:
The aim of this paper is to generalize the notion of almost valuation domains to arbitrary commutative rings. Also, we consider relations between almost valuation rings and pseudo-almost valuation rings. We prove that the class of almost valuation rings is properly contained in the class of pseudo-almost valuation rings. Among the properties of almost valuation rings, we show that a quasilocal ring $R$ with regular maximal ideal $M$ is a pseudo-almost valuation ring if and only if $V = (M : M)$ is an almost valuation ring with maximal ideal ${rm Rad}_V(M)$. Furthermore, we show that pseudo-almost valuationrings are precisely the pullbacks of almost valuation rings.
similar resources
Pseudo-almost valuation rings
The aim of this paper is to generalize thenotion of pseudo-almost valuation domains to arbitrary commutative rings. It is shown that the classes of chained rings and pseudo-valuation rings are properly contained in the class of pseudo-almost valuation rings; also the class of pseudo-almost valuation rings is properly contained in the class of quasi-local rings with linearly ordere...
full textpseudo-almost valuation rings
the aim of this paper is to generalize thenotion of pseudo-almost valuation domains to arbitrary commutative rings. it is shown that the classes of chained rings and pseudo-valuation rings are properly contained in the class of pseudo-almost valuation rings; also the class of pseudo-almost valuation rings is properly contained in the class of quasi-local rings with linearly ordere...
full textOmega-almost Boolean rings
In this paper the concept of an $Omega$- Almost Boolean ring is introduced and illistrated how a sheaf of algebras can be constructed from an $Omega$- Almost Boolean ring over a locally Boolean space.
full textLocal rings of bounded module type are almost maximal valuation rings
It is shown that every commutative local ring of bounded module type is an almost maximal valuation ring. We say that an associative commutative unitary ring R is of bounded module type if there exists a positive integer n such that every finitely generated R-module is a direct sum of submodules generated by at most n elements. For instance, every Dedekind domain has bounded module type with bo...
full textAlmost power-Hermitian rings
In this paper we define a new type of rings ”almost powerhermitian rings” (a generalization of almost hermitian rings) and establish several sufficient conditions over a ring R such that, every regular matrix admits a diagonal power-reduction.
full textϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...
full textMy Resources
Journal title
volume 43 issue 3
pages 807- 816
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023